A distributed and adaptive signal processing approach to exploiting correlation in sensor networks
نویسندگان
چکیده
We propose a novel approach to reducing energy consumption in sensor networks using a distributed adaptive signal processing framework and efficient algorithm . While the topic of energy-aware routing to alleviate energy consumption in sensor networks has received attention recently [1,2], in this paper, we propose an orthogonal approach to complement previous methods. Specifically, we propose a distributed way of continuously exploiting existing correlations in sensor data based on adaptive signal processing and distributed source coding principles. Our approach enables sensor nodes to blindly compress their readings with respect to one another without the need for explicit and energy-expensive inter-sensor communication to effect this compression. Furthermore, the distributed algorithm used by each sensor node is extremely low in complexity and easy to implement (i.e., one modulo operation), while an adaptive filtering framework is used at the data gathering unit to continuously learn the relevant correlation structures in the sensor data. Applying the algorithm to testbed data resulted in energy savings of 10%-65% for a multitude of sensor modalities.
منابع مشابه
A Distributed and Adaptive Signal Processing Approach to Reducing Energy Consumption in Sensor Networks
We propose a novel approach to reducing energy consumption in sensor networks using a distributed adaptive signal processing framework and efficient algorithm . While the topic of energy-aware routing to alleviate energy consumption in sensor networks has received attention recently [1,2], in this paper, we propose an orthogonal approach to previous methods. Specifically, we propose a distribut...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملA Fuzzy Based Approach for Rate Control in Wireless Multimedia Sensor Networks
Wireless Multimedia Sensor Networks (WMSNs) undergo congestion when a link (or a node) becomes overpopulated in terms of incoming packets. In WMSNs this happens especially in upstream nodes where all incoming packets meet and directed to the sink node. Congestion in networks, if not handled properly, might lead to congestion collapse which deteriorates the quality of service (QoS). Therefore, i...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ad Hoc Networks
دوره 2 شماره
صفحات -
تاریخ انتشار 2004